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Abstract

Jordan demonstrated that the group of homogeneous transformations of degree one in

R 5 is homomorphic to the symmetry group of the Einstein-Maxwell equations in vacuum.
It is shown that the Jordan homomorphism theorem is also applicable to the inhomo-
geneous general linear group. Consequently, the Poincaré group is homomorphic to the
group of homogeneous transformations of degree one in a five-dimensional space.

Introduction

Jordan (1945), in his projective theory of relativity, showed that the sym-
metry group of the Einstein-Maxwell equations for the combined electro-
magnetic and gravitational fields in vacuum is isomorphic to a subgroup of the
group of homogeneous transformations of degree one in a five-dimensional
space. This is the basis of the unified field theory of gravitation and electro-
magnetism based on a projective formalism, the so-called projective theory of
relativity (Jordan, 1955).

It turns out (Evans & Sen, 1973) that the symmetry group of the Einstein-
Maxwell equations has a semi-direct product structure—it is a semi-direct pro-
duct of the group of coordinate transformations in space-time and the group
of gauge transformations. And, it can be shown that the Jordan homomorphism
theorem is also applicable to other groups with a semi-direct product structure.
Thus the inhomogeneous general linear group IGL(n, R) (and consequently
the Poincaré group) is isomorphic to a subgroup of the group H(n + 1, R} of
homogeneous transformations of degree one in R”™%,
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The Homomorphism Theorem

Consider the Einstein-Maxwell equations? for the combined electromagnetic
and gravitational fields in vacuum
Gix tkE;=0
=0, fiue=0ix— b
where ¢; is the electromagnetic four-potential, Ey = filfkl — 28ifimf m the
energy-momentum tensor of the electromagnetic field f; and Gy, the Einstein

tensor for space-time with metric g;;. Equation (1) is, of course, invariant
under the pseudogroup K of C* transformations in R*

)

K3A: xF»xk= xk'(xk) )

Strictly speaking, X is a pseudogroup, because coordinate transformations
in a C” manifold, i.e. C* diffeomorphisms between open sets in R” do not
quite satisfy all the properties of a group. For a precise definition of pseudo-
group of transformations see Kobayashi & Nomizu {1963).

But (1) is also invariant under the (Abelian) group E of gauge transforma-
tions

Es[¢] ¢~ ¢;+¢; (3)

where ¢ is a scalar function in R®. The symmetry group of the Einstein-
Maxwell equations is therefore the combined pseudogroup G, a typical element
of which will be denoted by g = (A, [¢]) to mean a gauge transformation [¢]
followed by a coordinate transformation A, i.e.

(A, [6]) - i) 2 6,69 + 90091 > (i) +0M) 1y (@)

Note that the unit element of £ is [c], where ¢ is any constant. Denote by
e the unit element of K. If we consider a gauge transformation [¢,] followed
by a coordinate transformation A; and then [¢,] and A,—all in that order,
then the product rule for G is easily seen to be

(Az, [92]) - (Ag, [01]) = (M2Ay, [$2 © A+ 61]) ()
where ¢ O A, is given by:
* 2% 2 4,60 ()
The inverse rule is therefore

W o)=L [-p0oAD) ... (6)

1 Here comas and semicolons denote partial and covariant derivatives respectively,
and the summation convention is used throughout unless specified otherwise. Latin in-
dices take values i, k = 1, 2, 3, 4 and Greek indicesp, A =0, 1,2, 3, 4.
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We see that G = KE, i.e. (A, [¢]) can be written uniquely as (A, [¢]) = (A,
[e]) - (e, [9D)-
K induces an automorphism of £ as follows:
A, [eD) = (e, 8D = (A, [eD)e, [#1A, [eD™
= (A DA, [0 A™))
=(e [poATDEE
And F is a normal subpseudogroup of G, because

A, [ e [WDA, [91) = (AT [=¢ 0 A e, [VIXA, [6])
= (A7, [-9 0 AT, [W oA +g])
= [VoADEE
We thus have the following structure theorem for G.
Theorem 1. G is a semi-direct product of K and E.
Let now H(5, R) be the (pseudo) group of homogeneous transformations
of degree one in R®. That is, an element /2 € H(5, R) is of the form
hix*—>x¥=x¥6*), 1=0,1,2,3,4 M
where x* (x*) are 1nvert1ble homogeneous functions of degree one, h can be
also written as
BextoxE =xE®x%)  (no summation) (8)

where f%)(x*) are invertible, homogeneous functions of degree zero. H(5, R)
has the following subgroups:

1
= {h EH(S, R)lh: x* > x" =x"f(x") = x"‘F(ia, iy %5)}
XO‘*XO,_XO

) f}z EH(, R)|h: ¥ Ofk( x‘*) (9)

xX°

J is a normal subgroup of V. There exist the following homomorphisms

J—E, JB}"*M]—-[lOgF]
N=K, N3n  A:x*-x* k(x"’)

and thus proves the Jordan homomorphism theorem.

Jordan Homomorphism Theorem. H(5, R) is homomorphic to the sym-
metry group G of the Einstein-Maxwell equations in vacuum.

Now H(5, R} is a semi-direct product of J and V. This suggests that the
Jordan Homomorphism Theorem is also applicable to other groups with a
semi-direct product structure. We can easily prove the following theorem.

Theorem 2. The inhomogeneous general linear group IGL(n, R ) is homo-
morphic to H{n + 1, R).

(10)
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Proof, IGL(n, R) is a semi-direct product of GL(n, R) and Y” where

GL(n, R) DA : x* > apx®

NI }z’,k=l,2,...,n (11)

Consider now the following subgroup of H(n + 1, R)

] 0
X=X 1 n k
. 0 [ X X"\ _ X (12)
Xl_’Xfl(xon-n;('J)"XOaik(;('d)

which is a subgroup of the corresponding (for general n) subgroup N of (9) and
is isomorphic to GL(n, R).

Letnow AET" and ¢4 : R”— R be a function such that x > ¢a(x) is
linear in A, i.e.

Pa,+a,(0) = 9a, (%) + 94, (%) . .. (13)

For example, take ¢a(x) = (A . x).
Consider now the mapping T = H(n + 1, R ) given by

A~ exp (94 (X)) = F(x)

1
M= xMF 2(—,&"“> (14)
XK

Thus T is isomorphic to a subgroup of the corresponding (for general ) sub-
group J of (9).
instead of taking a linear function ¢ one can also consider a function
Ya: R” > R such that Ya + A0=9 A, () . ¥4 (x) and consider the map-
ping T"? = (n + 1, R) given by
A= Pax) = F(x)
! 15
X“—»)(MF(%,...,EO)} (15
X X
For example, take Y a(x)=exp (A .x). QUE.D.
The following corollary is then obvious.

Corollary. The Poincaré group in n-dimensions is homomorphic to
Hp+1,R).

Conclusion

It is thus possible to embed the Poincaré group non-trivially in a larger
group of transformations of a five-dimensional space. It has been suggested
(Review of Modern Physics, 1965) that embedding of curved space-times in a
higher dimensional pseudoeuclidean space may provide an understanding of
the informal symmetry of elementary particles. It is possible that considera-
tions of non-trivial embedding of the Poincaré group may also provide a similar
understanding.
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